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Abstract 

This paper is devoted to extend projective twin support vector machine (PTSVM) by 
smoothing technique and propose a navel classification method with linear and nonlinear 
versions, named as smoothed projective twin support vector machine (SPTSVM). The 
advantage of SPTSVM is to solve a pair of unconstraint differentiable optimization problems 
rather than a pair of dual QPPs. By means of Newton-Armijo method, an effective fast 
algorithm is suggested for solving SPTSVM. Experiment results compared with SVM, 
TSVM, PTSVM, and SPTSVM show that the proposed SPTSVM is a fast and effective 
classification method. 

Keywords: projective twin support vector machine, plus function, smoothing 
approximation function, unconstraint differentiable optimization, Newton-
Armijo method. 
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1. Introduction 

Support vector machines (SVMs), being computationally powerful 
tools for classification and regression problems [1-4], have been 
successfully applied to a wide variety of real-world problems, such as 
financial forecasting [5], computational biology [6], optimal control [7], 
image segmentation [8], time series prediction [9] and so on. The main 
idea of SVM is to find an optimal separating hyperplane by maximizing 
the margin between two parallel boundary hyperplanes of positive and 
negative examples. 

Different from SVM, multisurface proximal support vector machine 
via generalized eigenvalues (GEPSVM) [10], makes binary classification 
by two nonparallel hyperplanes, one for each class. In this approach, data 
points of each class are clustered around the corresponding hyperplane. A 
new input will be assigned to a class based on its proximity to one of the 
two hyperplanes. This formulation leads to two generalized eigenvalue 
problems. Based on GEPSVM, twin support vector machine (TSVM) 
proposed by Jayadeva and Chandra [11] constructs a pair of nonparallel 
hyperplanes by solving two smaller size QPPs rather than a single 
quadratic programming problem (QPP) such that each one is as close as 
possible to one class, and as far as possible from the other class. A new 
input will be assigned to one of the classes depending on its proximity to 
which hyperplane. Experiments show that TSVM is faster than SVM    
[11, 12]. 

Different from TSVM that seeks a hyperplane for each class by using 
SVM-type formulation, a multi-weight vector projection support vector 
machine (MVSVM) [13] is proposed by seeking one weight vector, such 
that the samples of one class are closest to its class meanwhile the 
samples of different classes are separated as far as possible. The weight 
vectors of MVSVM can be found by solving a pair of eigenvalue problems. 
By means of MVSVM and TSVM, projective twin support vector machine 
(PTSVM) proposed by Chen et al. [14] seeks a projection axis for each 
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class by solving an associated SVM-type QPP such that the projected 
samples are well separated from those of the other class in its respective 
subspace. 

In order to enhance the performance of PTSVM, inspired by the 
works in [15], we will introduce smoothing technique into PTSVM in this 
paper and develop a new classification method, termed as smoothed 
PTSVM (SPTSVM). This approach will results in solving a pair of 
unconstraint differentiable optimization problems rather than a pair of 
dual QPPs. In addition, we will use an effective fast algorithm to solve 
SPTSVM, which is called Newton-Armijo algorithm. To verifying the 
effectiveness of SPTSVM, we perform a series of comparative 
experiments with SVM, TSVM, and PTSVM on 10 datasets taken from 
UCI database and 6 datasets taken from NDC database. 

The rest of the paper is organized as follows. We briefly review TSVM 
and PTSVM in Section 2 and propose SPTSVM with linear and nonlinear 
versions in Section 3. A series of comparative experiments are performed 
in Section 4 and some conclusions are given in Section 5. 

2. Related Works 

In this section, we review TSVM and PTSVM briefly, for details, see 

[11, 12, 14]. Let {( ( ) ( ) )} 2,1,, 1 == iyx im
j

i
j

i
j  be a sample set of data for a 

binary classification problem, where 1=i  denotes the positive class, 

1−=i  the negative class and ( ) ni
j Rx ∈  and ( ) { }1,1−∈i

jy  are the input 

and class label of j-th sample belonging to class i, respectively. Let      

=A [ ( ) ( ) ] nmT
m Rxx ×∈ 1

1
11

1 ,,  and [ ( ) ( ) ] nmT
m RxxB ×∈= 2

2
22

1 ,,  be input 

matrices and .21 mmm +=  Let 11
mRe ∈  and 22

mRe ∈  be vectors with 

elements being ones. 
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2.1. Twin support vector machine 

Different from SVM finding the classification hyperplane by 
maximizing the margin between two parallel boundary hyperplanes, 
which involves the minimization of a quadratic programming problem 
(QPP), linear TSVM seeks two nonparallel hyperplanes 

,0and0 2211 =+=+ bwxbwx TT   (1) 

by considering the following two QPPs: 

( ) ( ) ξξ+++
ξ

TT
bw

cbeAwbeAw 22
1min 1

111111,, 11
 

( ) ,0,.. 2121 ≥ξ≥ξ++− ebeBwts  (2) 

( ) ( ) ηη+++
η

TT
bw

cbeBwbeBw 22
1min 2

222222,, 22
 

( ) ,0,.. 1212 ≥η≥η++ ebeAwts  (3) 

where 0, 21 >cc  are penalty parameters, 2mR∈ξ  and 1mR∈η  are 

vectors of slack variable and nRww ∈21,  and Rbb ∈21,  are decision 
variables, such that each hyperplane is the closest to one class and the 
farthest from another class. A new input is assigned to one class 
depending on its proximity to the two nonparallel hyperplanes. By 
solving the Wolfe dual forms of the problems (2) and (3), respectively, 

( ) α−αα −
α

TTTT eGHHG 2
1

2
1min  

,0.. 21ects ≤α≤  (4) 

( ) β−ββ −
β

TTTT eHGGH 1
1

2
1min  

,0.. 12ects ≤β≤  (5) 

where 2mR∈α  and 1mR∈β  are vectors of Lagrange multipliers and 

[ ] ( ) [ ] ( ),,,, 1
2

1
1 21 +×+× ∈=∈= nmnm ReBGReAH  we can obtain the 

optimal Lagrange multipliers vectors ∗α  and ∗β  and then deduce that 
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(( ) ) ( ) ,, 1
111

∗−∗∗∗ α−== TTT GHHbwu  

(( ) ) ( ) ., 1
222

∗−∗∗∗ β−== TTT HGGbwu  (6) 

It notes that since HHT  and GGT  are symmetric nonnegative definite 
matrices, we can regularize them if they are singular, that is, we            

can replace HHT  and GGT  by 1+ε+ n
T IHH  and ,1+ε+ n

T IGG  
respectively, where 0>ε  is a sufficiently small number and 1+nI  
denotes the 1+n  order unit matrix. Consequently, the class label of a 

new input nRx ∈  can be assigned by 

( )
( )

,minargclass
2,1 ∗

∗∗

=

+
=

i

i
T

i

i w

bxw
x  (7) 

where ⋅  denotes the absolute value. 

2.2. Projection twin support vector machine 

The main idea of PTSVM is to find a projection axis for each class 
such that within-class variance of the projected samples of its own class 
is minimized meanwhile the projected samples of the other class scatter 
away as far as possible. This leads to the following two optimization 
problems: 

( ( ) ( ) ) kkk
ξ+− ∑∑∑ ===ξ

211

1 11
21

11
1

1
11,

1
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m
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j
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where 0, 21 >cc  are trade off constants, kξ  and kη  are nonnegative 

slack variables. To simplify the above formulation, let 

( ( ) ( ) ) ( ( ) ( ) ) ,11 1
11

11
11

1
11

111 nnT
j

m

jij
m

ji
m

j
RxmxxmxS ×

===
∈−−= ∑∑∑  

( ( ) ( ) ) ( ( ) ( ) ) .11 2
12

22
12

2
12

222 nnT
j

m

jij
m

ji
m

j
RxmxxmxS ×

===
∈−−= ∑∑∑  

Then, the problems (8) and (9) can be rewritten as follows, respectively, 

ξ+
ξ

TT
w

ecwSw 21111, 2
1min

1
 

,0,1.. 2112
1

1 ≥ξ≥ξ+− eAweemBwts T  (10) 

η+
η

TT
w

ecwSw 12222, 2
1min

2
 

( ) .0,1.. 1221
2

2 ≥η≥η+−− eBweemAwts T  (11) 

By solving the Wolfe dual problems of the problems (10) and (11), 
respectively, 

( ) ( ) α−α−−α −
α

TTTTTT eeeAmBSAeemB 221
1

1
112

1

11
2
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,0.. 21ects ≤α≤  

( ) ( ) β−β−−β −
β

TTTTTT eeeBmASBeemA 112
2

1
221

2

11
2
1min  

.0.. 12ects ≤β≤  

We can obtain the optimal Lagrange multipliers vectors ∗α  and ∗β  and 

then deduce that 
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( ) ,1
21

1
1

11
∗−∗ α−= TTT eeAmBSw  

( ) .1
12

2
1

22
∗−∗ β−= TTT eeBmASw  

It notes that since 1S  and 2S  are symmetric nonnegative definite 

matrices, we can regularize them if they are singular, that is, we can 
replace 1S  and 2S  by 11 +ε+ nIS  and ,12 +ε+ nIS  respectively, where 

0>ε  is a sufficiently small number and 1+nI  denotes the 1+n  order 

unit matrix. Consequently, the class label of a new input nRx ∈  can be 
assigned by 

( ) ( ) ( ) ( ) .1minargclass
112,1

i
j

m

j
T

i
T

ii
xmwxwx i∑ =

∗∗
=

−=  

3. Smoothed Projection Twin Support Machine 

In order to enhance the performance of PTSVM, inspired by the 
works in [15], we will introduce smoothing technique into PTSVM in this 
section and develop a new classification method with linear and 
nonlinear versions, termed as smoothing projection twin support machine 
(SPTSVM). This approach will results in solving a pair of primal 
unconstraint differentiable optimization problems rather than a pair of 
dual QPPs. At the same time, we will propose an effective fast algorithm 
for SPTSVM by using Newton-Armijo method. 

3.1. Linear SPTSVM 

By introducing the plus function 

( ) { } ,,0,max Rxxx ∈∀=+  

( ) (( ) ( ) ) ,,,,1
nT

n Rxxxx ∈∀= +++  

the constraints of the primal problems (8) and (9) of PTSVM can be 
rewritten as, respectively, 
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where ( ( ) )Tj
m
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11
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=  and ( ( ) ) .1~ 2
12

2 T
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m
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=  

In order to avoid the singularity of the matrices 1S  and 2S  involved 

in PTSVM, we consider adding the generalization terms 2
1w  and 2

2w  

in problems (8) and (9), respectively. In addition, for obtaining 
differentiable optimization problems, we replace one penalty for slack 
variables in problems (8) and (9) by two penalty. Consequently, we get 
two improved unconstraint optimization problems 

( ) ,2
~

2
~

2
1min 2

1
32

1122
12

111
1

wcBwwAeecwAeAw
w

+−++− +  (12) 

( ) .2
~

2
~

2
1min 2

2
42

2211
22

222
2

wcAwwBeecwBeBw
w

++−+− +  (13) 

We know that the plus function ( )+x  for Rx ∈  is not differentiable. 

So, we introduce a smoothing approximation function ( )ζρ ,x  for ( ) ,+x  

where ζ  is a smoothing parameter, and then the problems (12) and (13) 

can be further improved the following two unconstraint differentiable 
optimization problems: 

( ) ( ) ,2,~
2

~
2
1min 2

1
32

1122
12

11111
1

wcBwwAeecwAeAwwf
w

+ζ−+ρ+−=  

(14) 
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( ) ( ) .2,~
2

~
2
1min 2

2
42

2121
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22222
2

wcwBeAwecwBeBwwf
w

+ζ−+ρ+−=  

(15) 

Recently, we find from literature [20-24] that there are some 
smoothing approximation functions for ( ) .+x  In this paper, we only use 

the smoothing approximation function ( ) ( )xexx ζ−+
ζ

+=ζρ 1ln1,  

presented in [20]. We can easily prove that the least square TSVM is a 
special case of smoothed TSVM with ( ) ., xx =ζρ  

Next, we propose a fast algorithm to solve the problems (14) and (15) 
based on Newton-Armijo algorithm. Newton-Armijo algorithm is one of 
the most popular iterative algorithms for solving unconstraint smooth 
optimization problems and has been shown to be quadratically 
convergent (see [15]). In the end, we firstly calculate the gradient vectors 

( )ii wf∇  and Hessian matrices ( )ii wf2∇  of the objective functions of the 
problems (14) and (15) 
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where ( ( ) ) ( ( ) ) 2
1
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2
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~1,~1 wxwBzwxwAz T

ii
T

ii −−=−+=  and I is the 

identity matrix of appropriate dimension. 
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Then we calculate the search direction td  by Newton method (called 

Newton direction) and search stepsize tλ  by Armijo method (called 

Armijo stepsize) for t-th step iteration. The specific procedure is as 
follows, in which we only solve the problem (14), with the similar way we 
can solve the problem (15). 

Algorithm 1. The Newton-Armijo algorithm for linear SPTSVM. 

Step 1. Initialization. For given parameter values 31, cc  and the 

maximum number of iterations T, let 0,0 >ε=t  be small enough and 

take arbitrarily nonzero vector .1
nt Rw ∈  

Step 2. Calculate Newton direction td  by solving the system of linear 

equations ( ) ( ).1111
2 t

t
t wfdwf −∇=∇  

Step 3. Calculate Armijo stepsize tλ  by inexact linear searching, that is, 

choose 






=λ ,4

1,2
1,1maxt  satisfying 

( ) ( ) ( ) .4 111111 t
Ttt

tt
tt dwfdwfwf ∇

λ
−≥λ+−  

Step 4. Update .1
tw  Calculate the next iterative point by formula 

.1
1

1 tt
tt dww λ+=+  

Step 5. If ε<−+ tt ww 1
1

1  or the maximum number of iterations T is 

achieved, stop iteration and take ;1
11
+∗ = tww  otherwise, put 1+← tt  

and return to Step 2. 

Step 6. The class label of a new input nRx ∈  is assigned by 

( ) ( ) ( ) ( ) .1minargclass
12,1

i
j

m

ji
T

i
T

ii
xmwxwx i∑ =

∗∗
=

−=  
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3.2. Nonlinear SPTSVM 

In this subsection, we consider the nonlinear version of SPTSVM by 

means of the kernel skill (for details, see [25]). Let RRR nn →×:k  be 
a kernel function with the reproducing kernel Hilbert space (RKHS) H 

and the nonlinear feature mapping .: HRn →φ  Let ( ) jii
m
ij uxw φ= ∑ =1  

and ( ) .2,1,,,1 =∈= jRuuu mT
jmjj  Nonlinear SPTSVM seeks a 

projection axis for each class by considering the following two 
optimization problems: 

( ) 2
1

312
1ker111, 22

~,2
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1
uccuAeuXXK T

u
+ξξ+−

ξ
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where [ ( ) ( ) ] [ ( ) ( ) ] ,,,,,, 2
2

1
1

22
12

11
11

nmT
m

nmT
m RxxXRxxX ×× ∈=∈=  

[ ] ,,,1
nmT

m RxxX ×∈=  

( )

( ( ) ) ( ( ) )

( ( ) ) ( ( ) )

,

,,

,,

, 1

11
1

1
1

1
11

1
1

1
mm

mmm

m

R

xxxx

xxxx

XXK ×∈























=

kk

kk

 

( )

( ( ) ) ( ( ) )

( ( ) ) ( ( ) )

,

,,

,,

, 2

22
2

1
2

2
11

2
1

2
mm

mmm

m

R

xxxx

xxxx

XXK ×∈























=

kk

kk

 



Xinxin Zhang and Liya Fan / IJAMML 2:1 (2015) 27-45 38

and ( ) ( ) .,~,,~
2
22

ker
1
11

ker m
XXKeBm

XXKeA
TT

==  Similar to the linear 

version, by introducing the smoothing approximation function ( )ζρ ,x  for 

plus function and avoiding the singularity of the matrices, we can 
improve the problems (16) and (17) into the following forms: 

( ) ( ( ) )
2

1ker2122
12

1ker111 ,~,2
~,2

1min
1

ζ+−ρ+− uAeuXXKecuAeuXXK
u

 

 ,2
2

1
3 uc
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( ) ( ( ) )
2

2ker1211
22

2ker222 ,~,2
~,2

1min
2

ζ−+ρ+− uBeuXXKecuBeuXXK
u

 

.2
2

2
4 uc

+  (19) 

For the problems (18) and (19), we also can propose a fast algorithm 
by means of Newton-Armijo method. In order to reduce the length of the 
paper, we will not repeat the algorithm description. After solving the 

optimal solutions ∗
1u  and ∗

2u  of the problems (18) and (19), the class label 

of a new input nRx ∈  can be assigned by 

( ) ( ) ( ) ,,1,minargclass
2,1

∗∗
=

= ii
T
i

i
ii

uXXKemuXxKx  

where ( ) [ ( ) ( )].,,,,, 1 xxxxXxK mkk=  

4. Experiments 

In this section, in order to verify the effectiveness of linear and 
nonlinear SPTSVM, we perform a series of comparative experiments on 
classification accuracy and running time with SVM, TSVM, and PTSVM 
by using 10 datasets taken from UCI database [26] and 6 datasets taken 
from NDC database [27], which are listed in Table 1. 
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Table 1. Description of NDC datasets 

Dataset Training data Test data Features 

NDC-200 200 40 32 

NDC-500 500 100 32 

NDC-700 700 140 32 

NDC-1000 1000 200 32 

NDC-2000 2000 400 32 

NDC-3000 3000 600 32 

In order to save experimental time and without loss of generality, 
experiments with linear versions are implemented on all 16 datasets and 
nonlinear versions on only 4 datasets of UCI database in Matlab (7.11.0) 
R2010b environment on a PC with an Intel P4 processor (2.30GHz) with 

4GB RAM. Take 50,10 3 ==ε − T  and the five-fold cross-validation 

method is used in all experiments. The classification accuracy is defined 
by 

,Accuracy FNTNFPTP
TNTP

+++
+=  

where TP, TN, FP, and FN denote the numbers of true positive, true 
negative, false positive, and false negative, respectively. For Iris, Vehicle, 
Waveform, and Balance four datasets with 3 classes, we choose, 
respectively, the later two classes for experiments. 

We know that the performance of classifiers seriously depends on the 
choice of parameters, in order to facilitate the comparison, all the 
parameters involved in classification methods are selected as the same 

value for each dataset, which are obtained optimally from { }88 2,,2−  

by grid search. Specifically, in the linear case, take ==== 321 cccc  

14 =c  for 10 datasets of UCI database and take 24321 ===== ccccc  

for 6 datasets of NDC database. In the nonlinear case, they are listed in 
Table 4. 
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The experiment results on 16 datasets with four linear classifiers are 
listed in Tables 2-3, respectively, and on 4 datasets with three nonlinear 
classifiers is listed in Tables 4. In nonlinear classifiers, the Gaussian 

RBF kernel function ( ) ( ) nRyxyxyx ∈∀σ−−= ,,exp, 22k  is used 

and the selected kernel parameter σ  is listed in Table 4. 

From Table 2, we can see that the classification accuracy of SPTSVM 
is better than that of SVM, TSVM, and PTSVM except to Iris, Pima and 
Balance three datasets. From Table 3, we can see that the classification 
accuracies of TSVM, PTSVM, and SPTSVM are almost same. From Table 
4, we can see that the classification accuracy of SPTSVM is much better 
than that of PTSVM and better than that of TSVM except to Breast 
dataset. In addition, we can see from Tables 2-4 that the running time of 
SPTSVM is much faster than that of SVM, TSVM, and PTSVM. 

According to the above analysis, we can conclude that the proposed 
SPTSVM in this paper is a fast and effective classification method. 
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Table 2. Comparison results on UCI datasets with linear classifiers 

Dataset SVM TSVM PTSVM SPTSVM 

 Accuracy(%) Accuracy(%) Accuracy(%) Accuracy(%) 

 Time(s) Time(s) Time(s) Time(s) 

Iris (150 × 4) 46.00 92.00 97.00 93.00 

 2.1165 0.6764 0.4015 0.2544 

Vehicle (150 × 18) 43.00 80.00 87.00 96.00 

 0.9774 0.9261 0.9374 0.9073 

Vote (435 × 16) 45.00 94.00 96.00 96.00 

 22.3835 0.8148 1.2286 0.8878 

Waveform (150 × 21) 48.00 85.00 94.00 94.00 

 0.9975 1.7310 0.9770 0.7798 

Heart (303 × 13) 40.00 80.42 71.50 82.50 

 21.8097 1.4095 1.5077 0.9195 

Breast (277 × 9) 29.09 70.91 67.50 72.37 

 11.0981 1.0266 1.1766 0.5484 

Liver (345 × 6) 47.59 50.69 51.00 59.66 

 37.4085 2.9929 1.9903 0.9475 

WBC (600 × 9) 47.73 94.45 96.47 97.14 

 134.7745 2.1118 2.0755 1.0822 

Pima (768 × 8) 43.53 77.52 77.78 76.08 

 301.1075 5.5552 4.7964 1.5656 

Balance (625 × 4) 32.63 93.51 80.70 91.23 

 205.1922 2.2641 2.5184 1.9759 
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Table 3. Comparison results on NDC datasets with linear classifiers 

Dataset SVM TSVM PTSVM SPTSVM 

 Accuracy(%) Accuracy(%) Accuracy(%) Accuracy(%) 

 Time(s) Time(s) Time(s) Time(s) 

NDC–200 49.74 94.87 96.41 94.36 

 6.8972 0.6764 0.4015 0.2544 

NDC–500 50.91 93.13 93.53 93.94 

 174.5929 2.2207 4.0082 1.8806 

NDC–700 49.86 96.85 96.00 95.86 

 494.6866 4.0462 5.0680 2.0753 

NDC–1000 51.46 96.38 96.38 96.48 

 1748.1991 9.4119 12.0677 3.7086 

NDC–2000 50.77 96.75 96.80 97.05 

 4646.8998 34.3231 32.3449 9.4606 

NDC–3000 – 97.50 97.06 97.56 

 – 75.4724 72.0731 12.8803 

Table 4. Comparison results with nonlinear classifiers 

Dataset Parameters TSVM PTSVM SPTSVM 

 σ  Accuracy(%) Accuracy(%) Accuracy(%) 

 4321 ,,, cccc  Time(s) Time(s) Time(s) 

Breast (277 × 9) 0.2 74.9091 63.00 72.00 

 (100,0.1,10,0.1) 16.0340 12.6062 5.7369 

Heart (303 × 13) 10 64.17 64.17 79.17 

 (1,1,1,1) 8.5809 12.4591 8.2543 

Liver (345 × 6) 0.3 61.72 54.14 67.59 

 (1,1,1,1) 12.9630 16.8381 8.0878 

Pima (768 × 8) 0.3 71.37 67.97 76.86 

 (1,1,1,1) 75.3000 103.9722 150.172320 
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5. Conclusion 

In this paper, by means of a smoothing approximation function of 
plus function, we extend PTSVM to SPTSVM with linear and nonlinear 
versions and propose an effective fast algorithm for solving SPTSVM by 
using Newton-Armijo method. In order to verify the effectiveness of 
SPTSVM, we perform a series of comparative experiments on 
classification accuracy and running time with SVM, TSVM, and PTSVM 
on 10 datasets in UCI database and 6 datasets in NDC database. 
Experiment results show that the proposed SPTSVM is a fast and 
effective classification method. We know that smoothing technology is a 
powerful methodology for fast solving various SVM-type classifiers. But 
the main challenge is to select proper smoothing approximation functions 
for different classifier modellings. Along this line of thought, we will 
study two aspects of problems. One is the improvement of modelling and 
another is the selection of smoothing approximation functions. 
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